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ABSTRACT

Our title describes a phenomenon best illustrated by our Theorem 1.

1. Let h(x) be an entire function of exponential type A < 21r. We

show that there is a unique entire function f(x) of exponential type A

satisfying the functional equation

(1) f(x+1) - f(x) - h(x), with f(O) - 0

2. We define a function S n(x) which reduces to a polynomial in [0,1):
2 n

(2) S (x) - alx + ct 2x  +•+ anx if 0 < x <
n In

and we extend the definition of Sn(x) to all real x by asking that it

satisfy

(3) Sn(x+1) - Sn(x) - h(x) for all real x. CAccession A r

If we require also that NTIS -GRAI "

(4) s (V)(+0) = s(V)(- 0 ) for V - 0,1,...,n-1 DTIC TAB
n n U1'cU'Lojnced

then we have Justflcatc,.

(5) S (X) C Cn-'(a)

and also f-vailabill!.-.

(6) lim S S(x) f r(x) uniformly for all real x .- Dist p4
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Our title stresses the phenomenon that the Cn-1-continuity requirement
(5) implies the approximation prop.rty (6).

As a second example we deal with the functional equation

(7) f~x) = xf(x+1), with f(1) = 1 ,

satisfied by f(x) = 1/r(X).

AMS (MOS) Subject Classifications: 15A06, 39B20, 41AI0

Key Words: Functional equations, Approximations

Work Unit Number 3 - Numerical Analysis and Computer Science



SIGNIFT"ANCE AND EXPLANATION

Examples are Qiven of functional equations, like f(x+1) - f(x) = h(x),

where a solution f(x) is everywhere defined, provided that f(x) is

prescribed in the interval 0 < x < i. We define a function Sn (x) by
=n

settinq Sn (x) = Pn(x) in 0 < x < 1, where (x) is an as yet unknown

polynomial of deqree n, and requirinq Sn (x) to satisfy our functional

equation for all real x. We now impose the

Continuity Requirement. We require the composite function S (x) to

have n - 1 continuous derivatives at the point x = 0.

It is shown in our examples that the Continuity Requirement has the

followinq consequences.

1, Sn (x) has at least n - 2 continuous derivatives for all real x.

20. As n + f Sn(x) converqes to a solution f(x) of our functional

equation.

The fact that the Continuity Requirement implies the approximation

property 20 explains the meaninq of our title.

The responsihility for the wordinq and views expressed in this descriptive
summary lies with MRC, and not with the authors of tbis report.



HIGH ORDER CONTINUITY IMPLIES GOOD APPROXIMATIONS

TO SOLUTIONS OF CERTAIN FUNCTIONAL EQUATIONS

T. N. T. Goodman, I. J. Schoenberg and A. Sharma

1. Introduction and main results. We describe here an apparently new

principle of generating polynomial approximations in 0 < x < 1 to the

solutions of certain functional equations.

Our mysterious title will become less so if we mention first the example

of the exponential Euler spline Sn (x;t) satisfying the functional equation

(1.1) Sn(x+l;t) = tSn(x;t), with Sn(O;t) - 1

Here t is a constant such that

(1.2) t = Itle ia, -W < a < W, t A 0, t )k I.

Let

(1.3) Pn(x) = 1 + clx + c2x 2 +...+ Cnx n

be an as yet unspecified polynomial. We define the function Sn (x;t) by

requiring firstly, that

(1.4) Sn(x;t) = Pn(x) if 0 < x < 1n n=

secondly, that Sn (x;t) should satisfy the functional equation (1.1) for all

real x. The result so far is that Sn (x;t) is a piecewise polynomial

function depending on the n parameters c1 ,...,c n I

Now comes the essential requirement: We ask that

(1.5) Sn (X;t) E Cn-1(R)

This is what turns Sn (x;t) into the exponential Euler spline. In fact it

suffices to require Cn-l-continuity only near the point x = 0, because

(1.1) will propagate this order of continuity to all other integer points.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.



Concerninq the continuity at x = 0: By (1.4) and (1.1) we see that in

0 < x < 1 we have Sn (x;t) = Sn (x) - P (x), while in -1 < x < 0 we have

Sn(x) = Sn(X+1)/t = Pn(x+l)/t. These two functions Pn(x) and Pn(x+l)/t

will join at x = 0 with n - I continuous derivatives iff

p (0) = P(") (1)/t or

(1.6) p M)(1) = tP (V)(), (V = O,...,n-1)
n n

These are precisely the equations that define the polynomial

(1.7) Pn (x) = An(x;t)/An(O;t) I

where An (x;t) is defined by Euler's qeneratinq function

SA (x;t)(1.8) t-1 exz ___n_ n
e n Z

t-e 
0

For details see (91, where the exponential Euler splines were first

introduced. It was also shown there that

(1.9) lim S (x;t) = t' - ItIxei  for all real x
n

To summarize: We assume (1.1) and (1.4); now the continuity condition

(1.5) implies the approximation property expressed by the limit relation

(1.9).

That continuity under similar circumstances implies approximation is not

an isolated phenomenon. Our second example is the functional equation

(1.10) f(x+1) - f(x) - h(x), with f(O) - 0 ,

satisfied by the "sum" f(x) of a prescribed function h(x). We assume

h(x) to he entire of exponential type.

Our main result concernina (1.10) is

Theorem 1. 1. We assume that=m==l ====*l: :

(1.11)h( O)l < C.A (V - 0,1,... ), where C and A are constants

such that

(1.12) A < 2w

-2-



The equation (1.10) has a unique entire solution f(x) such that

(I 1 ){ (v)( ) < .
(1.13) If (0)1 1 KA , (v = 0,1,,.. ), with K constant

2. We define Sn (x) by setting

1 1 2 1 n
(1.14) S (x) = a x + j- a 2 x +...+ - ax if 0 < x < I

and extend its definition to all real x so as to satisfy

(1.15) Sn (x+l) - S n(x) = h(x)

If we require that

(1.16) Sn (x) is of class Cn - 1 in a neighborhood of x = 0

then

(1.17) Sn (x) E Cn-(R) '.

Finally

(1.18) lim S (x) = f(x) uniformly on R
nn

For a proof see 42. Theorem 1 is very close to a result of J. M.

Whittaker [12, Theorem 3 on page 221. Our proof brings out more clearly the

main idea of this paper: That (1.14), (1.15), and (1.17) imply (1.18).

If e.g. h(x) = 2x  (satisfying (1.11) with A - log 2 < 2W), then the

unique solution of (1.10) satisfying (1.13) is, of course, f(x) = 2x . The

approximation Sn(x) to 2x , furnished by Theorem 1, is different from the

exponential Euler spline Sn(xlt), for t = 2.

Our third and last example is perhaps the most interesting one: We

consider the functional equation

(1.19) f(x) = xf(x+1), with f(1) = 1

satisfied by the reciprocal r-function

1
(1.20) f(x) , (x)

Notice that (1.19) implies f'(x) - f(x+1) + xf'(x+1), and setting x = 0 we

obtain that

(1.21) f'(0) = f(1) = 1

-3-



Al~qo (1.19) implieA for x = 0 that f(0) - 0. Accordingly, we consider tho

polynomial

(1.22) Pn (X) - x + a 2 x2 +,..+ anx n

and followinq our general approach we define the function n (x) by setting

(1.23) S (x) = P (x) if 0 < x < 1 ,
n n =

and extend its definition so as to satisfy

(1.24) Sn (x) = xSn (x+l), Sn (1) = 1, for all real x

We pass now to the critical continuity requirements on S nx). Observe

that by (1.23) and (1.24) we obtain the followinq:

(1.25) In 0 < x < 1 we have S (x) - P (x) ,
= n n

(1.26) in -1 < x < 0 we have S (x) - xS (x+1) - xP (x+1)
- n n n

If we want these two functions to join at x = 0 with n - I continuous

derivatives, we must ask that

(1.27) P (x) - xP (x+1) = O(xn), as x + 0n n

Our main result is

Theorem 2. For n = 1,2,.oo there is a unique polynomial
(n2 a(n)n

(1.28) p (x) - x + a (n)x +...+ a x
n 2 n

satisfying (1.27) with Pn(1) = 1. Its coefficients are rational numbers.

A proof is given in 43. The first six polynomials of this remarkable

sequence ire

P1 (x) P 2(x) x

1 2 1 3
P3(x) x + ix -Ix

3 2 2 3  1X
(1.29) P4(x) = x +±x -53 +1

4 x2 23 3 1 4 2 5Ps(x) -x+-x -- x +-x +-x
55 7 3 35 35 T

15 2 17 3 1 4 4 5 1 6P(x) -x +-x "-2 -- x +- -- x
6 2 6 2 6 2 6 2 6 2 6x

-4-



The question as to how the C n--continuity of Sn (x) at x = 0 is

transmitted by (1.24) to the other integers is easily answered as follows.

(1.30) In f-2,-I) Sn (x) = XSn (x+1) = x(x+1)Sn (x+2) = x(x+i)Pn (x+2)

From (1.27) we find that Pn (x+) - (x+1)Pn(x+2) = O(x+1)n as x + -1,

whence

xP (x+l) -X(X+I)P (x+2) N O(x+l)n O(x+l)nasx+-
n n

Rut then (1.26) and (1.30) show that

Sm )(-1+0) = (V) (-1-0), (V = O,...,n-1)
m n

and we readily find similarly that

(1.31)S (k+O) = S (k-0), (V = 0,...,n-1) for all integers k < 0
n n

Matters are slightly different if we pass to positive k.

S (x-1) P (x-1)
(1.32) In rl,2) : S (x) = =- .n x-1 x-1

Now (1.27) shows that P n(X-1) - (x-i)Pn (x) = O(x-1)n and so

P (x-1) n-1
(1.33) P n(X) = O(x-1) as x + 1x-1 n

Rut then (1.23) and (1.32) show that

S(V) (1+0) = S ()(1-0) only for V = 0,...,,n-2
n n

so that we have lost at x = 1 one order of continuity.

From here on there is no further loss of continuity:

1 S(x-2) 1 P(x-2)
(1.34) In [2,3) : S(x) -1 x-2 =- x-2

nx-1 x-2
P (x-2)n-
nn-

However, (1.33) gives x-2 P (x-1) = O(x-2) as x + 2, whencex-2 n

1 P (x-2) P (x-N) n-11 n -n ( O-x_2)n-i

x-1 x-2 x-1 OX-1 (x-2) as x + 2

and (1.32), (1.34) show that

S (V)(2+0) = S (V)(2-0), (V O,...,n-2)
n n

This contintes for all positive k and we obtain

-5-



Corollary 1. The approximation S (x) defined hy (1.23), (1.24) and
== n~

(1.27) has the followinq continuity properties:

(1.35) Sn (x) , Cn - 1 at the points x 0,-1,-2,...

(1.36) Sn (x) E Cn -2 at the points x = 1,2,3,...

The only exception is S1 (x) which is continuous on all of t.

The exceptional case of S1 (x) is due to P1 (x) = x and the identity

x - x(x+l) = x2 = Ox2 as x + 0.

A further immediate consequence of (1.24) is

Corollary 2. The approximation S (x) interpolates 1/r(x) at alln

integers, hence

(1.37) S (V) r for V E Zn T(V

We have referred above to Sn (x) as an approximation of 1/r(x). Is it?

This essential point we can not settle and wish to state it as

Conecture 1. The sequence of polynomials Pn(x) of Theorem 2 satisfy

1
(1.38) lim P (x) = uniformly in every circle of C

n+ft

As an extremely weak substitute we establish

Theorem 3. For n = 1,2,... we have

(1.39) P (x) > 0 if 0 < x < 1
n =

(1.40) PIx) > 0 if 0 < x < 1
n = =

Proof of (1.39): We apply the Budan-Fourier theorem in its classical

formulation; see e.q. (81 where it is derived from the Descartes-Jacobi

theorem by means of a special totally positive matrix; see also [5, 316-3181.

Writinq Pn(x) - P(x) we use the notation

(1.41) V(x) v(P(x),P (x),.

for the nu 'er of - Anqes of siqn in the sequence as indicated. If Z(0,1) =

number of z-s-J of Px) in (0,1), then the theorem states that

(1.421 Z(O,1) < V(1) - V(O)

-6-



However, the relation (1.27) will provide much information concerniny V(0)

and V(1): Writinq F(x) = P(x) - xP(x+1) we find by Leibnitz's formula that

F(V)(x) = P (V)x) - xP ()(x+l) - VP (V-)(x+I). Setting x = 0, (1.27) shows

that

(1.43) P(V)(0) = VP(V-1) (1), (V = 1,2,...n-1)

and.the riqht side of (1.42) promises to vanish. In fact from P(x) =

x + a x 2 +...+ anx n and (1.43) we find that

(1.44) V(O) = v(O,1,a 2 ,...,a n2, an-l, an)

(1.45) V(1) = v(l,a 2 ,a 3 ,...,an_1, , a n)

We distinquish two cases.

1. a n-an < 0. In this case we see from (1.45) that V(1) = V(0),

whatever the siqn of p(n-1)( 1 ) miqht be.

2. an- 1 a n > 0. In this case

p(n-1)(x ) = an-l(n-1)! + annlx

shows that P(n-1 )(1 ) has the common siqn of a n-1 and ano so that aqain

V(1) = V(0) .

Above we have assumed that an-lan # 0, but the last result is seen to

hold in any case, whether one or both a n- 1 and a n should vanish.

We postpone a proof of (1.40) to 44 because it used results from 4 3.

Usinq (1.24) as in our proof of Corollary 1 we obtain

Corollary 3. We have

(1.46) Sn (x) > 0 if x > 0

and

(1.47) Sn (x) < 0 in (-1,0), Sn (x) > 0 in

(-2,-i), Sn (x) < 0 in (-3,-2) a.s.f.

with alternatinq siqns.

A curious neqative consequenco is

-7-



Corollary 4. The function G(x) = loq S (x) is not a concave function
n

for x > 0.

This follows from a theorem of Bohr, Mollerup and Artin f2, Theorem 2.1

on page 141 that F(x) = log r(x) is the only convex solution of the

functional equation

F(x+1) - F(x) = log x for x > 0, with F(1) =0

It suffices to observe that, by (1.24) and (1.46), the function G(x) =

log Sn (x) satisfies

G(x+I) - G(x) = -log x for x > 0, with G(1) - 0

while the identity G(x) = -F(x) is evidently impossible.

Everybody believes the Euler constant

n
Y = lim(- -1 - log n) = .57721 56649 ...

1 V

to be irrational, but as far as we know nobody has proved this. We also

believe it, and will here assume that

(1.48) Y is an irrational number

By (1.37) we know that Sn (x) interpolates F-1 (x) at all integers.

However, much more is true as stated in

Corollary 5. We assume (1.4S) to hold, and let n > 3. For each k E Z

the two open arcs

(1.49) y = S (x) (k < x < k+1) and y (x) (k < x < k+1)n _

cross each other.

Proof. Let k = 0. Assuming that the arcs (1.49) do not cross and let

us get a contradiction. More precisely let us assume that

(1.50) S (x) - P (x) < r-(x) if 0 < x < 1
n n

Prom (1.32) we have

S (x-1) 1-1(x) =n ],-1 (x-1) i < <S (x) -;- if I < x < 2
n x-1 x-1

-8-



and therefore
S (x s (x-1)n n

-1 < 1 by (1.50)
r 1 (x) - (x-1) =

Hence

(1.51) S (x) < P- ( x) if I < x < 2
n -

However, (1.50) and (1.51) show that S (x) < -I (x) throughout the interval
n -

0 < x < 2. Since S (1) = P- (I), while S E C I ( R), we conclude that theirn n

slopes at x = 1 must be equal. This is impossible by (1.48) because

-1 2(d/dx)r- (1) = -F,(1)/r(1) = -r,(1) = y, while S'(1) is evidently an

rational number.

We illustrate numerically our conjecture (1.38) as well as Corollary 5

for the case when n = 6. With P6(x) as given in (1.29) and the table of

r(x) il, Table 6.1 on page 267) we find that the functions P6 (x) and

r-1(x) cross at a point & = .1182..., and that we have

o < - 1 (x) - P 6(x) < .000 001 if 0 < x <06

0 < P 6(x) - I- (x) < .000 15 if C < x < 16

From the evident proportion

S (x) S (x+k)
= , (x 0Z, K e Z)

(-Cx) r-1 (x+k)

it is clear, that for n = 6, the two arcs (1.49) cross at the point

x = 4CA.

Concluding we wish to point out that the two papers (4) and (11) deal

with subjects related to the topic of the present note.

-9-



2. The equation f(x+l) - f(x) = h(x): A proof of Theorem 1. We apply

our previous method: Let us construct a compositie function Sn (x) havinq

the two properties:

1 1 2 1 n
(2.1) S (x) = P (x) =-a x + a2 x +...+- a if 0 < x < 1

n n 1! 2 x nx

(2.2) S (x) satisfies S (x+1) - S (x) = h(x) for all real xn n n

On this function we now impose the continuity condition:

(2.3) S (x) E C n- 1(R)
n

We claim: If Sn(x) is of class Cn 1 in a neiqhborhood of x = 0

then (2.3) holds.

Proof. We write S n(x) = S(x). Differentiation of (2.2) shows that

Sv) (k +l +O) - S(v) (lk +O) = h(v) (k + O ) ,

s(V) (k+1-0) - S(V) (k-O) = h(V) (k-O)

and by subtraction

(2.4) s(V) (k+l+0) - S(V) (k+1-0) = S(V)(k+O) - S(V) (k-0)

This implies that if the riqht side of (2.4) vanishes for k - 0, it must

vanish for all k and (2.3) is established.

To inforce Cn-1 -continuity of Sn at x = 0 we observe the followinq:

By (2.1) and (2.2) we have:

In (0,1) : S(x) = Pn(x), while in (-1,0) : S(x) = S(x+1) - h(x) = Pn(x+1) -

(V) (v)
h(x). Therefore the equations S (+0) = S (-0), (V = 0,...,n-1)

are equivalent to P (V)() a P (V)(1) - h(V) (0), and hence to
n n

(2.5) p (V) (1) - P (V)(0) + h V)(0), (V - 0,...,n-1)
n n

The remainder of the proof is divided into several parts.

a) Construction of the Pn X). In terms of our explicit expreession

(2.1) of P n (x), the system (2.5) is seen to he

-10-



1 1 1
1 a + -a +...+ -a n = O)

(2.6) -a +1 1+ (n-) 1 (0)

I 1 (n-1)11

an= h (0)

and let us solve it for the a

The matrix of (2.6) is seen to he upper-trianqular and also "striped",

and the inversion of such a matrix is equivalent to the expansion of the

reciprocal of a polynomial, as seen from the equivalence of the two relations

C 1  C 2 *°" C -D D 2 *°" D1 2 n 1 2 n

(2.7) 0 C see C n- 1  0 D1 *-"Dn-1

0 C1  0 D1

(8)1 = n-i + O

(2.8) n - 1  D + D t +1 ++ D t + 0(tn), (as t + 0)
1 +2 n

For the matrix of (2.6) we find that

1 1 1 tn-1 et-1

+ t +000+ = + 0(tn)

and therefore
n-1 Bv

1/( + - t +.+ - tn I t + 0(tn) = -+ O(tn1! 21 n1 t V0e- 0

where B are the Bernoulli numbers. It follows that the solution of (2.6)

is qiven by the matrix equation

-11-



B1  Bn_
1 n- h(0)

11 (n-1)!

1B 2  * h' (0)
a2  (n-2)!

* 0

an 01 h(n- 1 0)

or
n-kn- S (k+v-1)

and so
n k n kn-k Bh (C-i+V)

Pn(x) = X -jak = -, h (0)
kI k I !i O
k=1 i k k1 i V=0V

Replacinq k by k + 1 we find that

n-1 k+1
(2.9) p (x) I x A

n k=O (k+1)1 n,k

where

n-k-1 BV  (Vn-k)i BV-k h(V)(2.9') Ak = *hVc()-- h O
V=O (V-k)!

B) Construction of the solution f(x). Let m show that the

polynomials (2.9) converqe if 0 < x < i and determine their limit. From
M W

lim sup tBv/Vl 1l/v = 1/2T we conclude that for a small 8 > 0 we have

IBv/Vlt 1 /V < I/(2w-8) for sufficiently large v, and so

< C 1 1 w-  ) for all V

But then our assumption (I.11) shows that

(21) IBv h(V~k) Ak A V

(210) j(0) < C2  (2w-T) for all V, with C2  constant

In view of (I.12) we may assume 8 to be so chosen that A <2 - 8. Then

(2.10) shows that Sk is well defined by.

(2.11) sk - T ()(
V V1

-1 2-



and that

(2.12) Isk1 < C3Ak for all k, C3 constant.

But then
as k+l

(2.13) f(x) = x S
k=O (k+1)I k

is an entire function satisfyinq (1.13).

y) Let us show that

(2.14) lim P (x) = f(x), uniformly in 0 < x < 1
n = ==n w

By (2.9) and (2.13)
n-1 k+1 D k+1

f(x) - P(x)= ( x (s k -A (k+)I skk=0 k-n

and that it suffices to assume 0 < x < 1, and to show that

n-i k+1
R n (x) = l X (S k - n, k ) + 0 as n +

k=O

uniformly in O,1].

In [0,11 we have from (2.10) that

n-i (V44)

IR(X)I - (I1)VI (0)
n =( V=n-k

n-1 1 AV k

I=O (k+l)l V-n-k ( 2 w- 6 )v

and replacinq the index V by V+n-k

nil 1 7_ AV+n
IRn(X)I < C2 M4 1)1 )n - k + v

k< ( n V=O (2w +l8

A n l O (21 -) 
k  A v2,,)n Ic1) 2i76

<2( ) (2) (A' "  < C4(- A + 0
- -T v-0 kO +)i 2-6 -2 -- 0

2=w W w



which estahlishes (2.14).

6) Proof that

(2.15) f(x+1) - f(x) = h(x)

Let

(2.16) n(x) = Pn (X+l) -Pn x)

(V) (V) (v) =(hv)

By (2.5) we have M (0) = P (1) - P )(0) = h (0), which shows that
Qnn n

n-i V

9n(x) - 0 x h(v)

But then (2.16) becomes
n-i V

P (x+l) - P nx) = -1 - h (0)
n n V0

and now (2.14) implies (2.15).

Remarks. 1. Is f(x) the unique solution of (1.10) satisfying

(1.13)? That it is we see as follows: The difference of two solutions of

(1.10) is also entire of exponential type < 2T and is also periodic of

period 1. By a qeneral theorem (see (3, Theorem 6.10.1 on page 109]) this

difference must reduce to a constant.

2. Since Sn X) and f(x) satisfy (1.15) and (1.10) we have

Sn(X+1) - Sn (x) - (f(x+1) - f(x)) = h(x) - h(x) = 0

and so

Sn(x+l) - f(x+1) - Sn x) - f(x) for all x

This shows that the uniform convergence in (2.14) implies that

(2.17) lim S (x) - f(x) uniformly for all real x
n

-14-



3. The equation f(x) = xf(x+1): A proof of Theorem 2. The matter

seems quite simple if we use the proper tools. From (1.27) for x = 0 we qet

that Pn(0) = 0. For P(x) = x the left side of (1.27) becomes x - x(x+1) =

-x , and this shows that P1 (x) = P2 (x) = xe

n-1
Assuminq n ) 2, (1.27) qives P'(x) - Pn(X+I) - xP'(x+1) = Onx - , and

n n n+I

for x = 0 that P'(0) = P (1) = 1. Forn n

(3.1) Pn(x) x + a x 2 +...+ anxn

we write (1.27) explicitly and find

2 3 n
x + a2x + a3x +.o•+ anx

- x(x+l)

- a 2x(x2 + 2x+1)

- a3x(x
3 + 3x 2 +3x + 1)

i nni n. n-2 =xn

-a x(xn + (n)x n - 1 + ( 2 )x +...+ 1) Ox as x + 0
n

Collectinq terms and writinq that the coefficients of x,x2 ,...,x n - , vanish,

we qet the equations

-a -a -o•- an- 2 -a -an 0

n-2l n- 1n ,
a2  -1 -2a 3a n-2 )a -( 1 )a - ( )a 0

22 3 1 n-2 1 n-i I in

n-2 n-i n
a 3  -a 2 - 3a -.- 2 )a n-2 ( 2 )an-1 - 2 )a n 0

32 n-a n-i n 
n-2 n- n

a 4  -a 3  - - (3 )a- 2 -(3 )an-1 - ( 3 an 0

S

n n- 1 nan -an 2 -( (n2)an~i - (n 2 )an - 0

This is a system of n - 1 equations in a 2 ,...,an. Rearranqinq these

equations we may write

-15-



a 2 + a3  + a4  +o o 0+ an-2  + an- 1  + an  0

n-2l n-i n~a -
(2-1)a + 3a + 4a +...+ (n1 )a + ( n )a + (n )a M -

2 3 4 1 n-2 1 n-1 i n
n- n- na n  =

a (31 )a 3 + 6a 4  +... (n )a + ( 1)a + ( )a = 0
2342 n-2 2 n-1 2 n

(3.2) n-2)a +-2 n-1)a +  ( )a W 0
34 ( 3 )a- 3 n-ia 3  + (4-1)a 4 +...+ 2 +( ( a +=

a 2 + (i n-1) a + nn)a =0
n-2 n-i n-2 n

observe the simple structure of the determinant A of this system* Porn

instance

1 1 1 1

2-1 3 4 5

1 3-1 6 10

0 1 4-1 10

It is obtained frop a solid minor

1 1 1 1

2 3 4 5
D5 =

1 3 6 10

0 1 4 10

of the Pascal trianqle by subtractinq I from the elements of the diaqonal

just below its main diagonal. A simple induction shows that all these minors

are 1 :-

-16-



1 1 ... 1

2 3 n)

(3.3) D = 1 3 . = .

1

* S

... (n

n- 2

Indeed by succese'-1v n-antractinq each column from the next one we find

1 0 0 0

2 1 1 1

5= =D 4 a.s.f.
1 2 3 4

0 1 3 6

We now consider the determinant of the system (3.2)

1 1 1 1 1

2-1 3 (n2) (n1) (n)
1 1 1

1 3-1

(3.4) A = 0 1n

n-2 n0 1 (n_2)-1  (n_2)

and wish to prove

Lemma 1. We have

(3.5) A > 1 for n = 1,2,...
n =

Proof. 10. We use the fact first pointed out in (71 (see also r81) that

the infinite Pascal trianqle is totally positive, i.e. all its minors, of all

orders, are > 0.

-17-



20. We split the First n - 2 columns of (3,4) into two coltimns, the

second columns containing only vanishing elements, except the qingle Plement =

-1. In this way A as a sum of 2n-2 determinantsn

(3.6) A = D + 3I 2. ir) (1 = il < i <...< i < n-2)
n n r>1 2 < 2

where tn = 1, hy (3.3), while (ii,...,ir) runs through all combination

of r among the numbers 1,2,...,n-2, (r>1). Thus A(i ,...,i r ) is the

determinant obtained from Dn by replacinq its columns illi2,., r by the

columns
(iT +) (i r+1) T(0,...,0,) - I I 0,.o.pI F 0 0,0)

We summarize its structure by

(iI)  (i2) (ir)

UU2 Ur
0 0 0

o

(3.7) A(i 1 ,- - - ,i) = 0

o0

* 0
o 0 0

Here all elements are the old elements of T) n except for those in the r

columns i1i2,...,Are

30. We apply Laplace's rule (see (5, page 61) of expandinq the

determinant (3.7) by all its minors of order r, from its r columns

il,...,fir, multiplied by their alqebraic compliments. This expansion reduces

evidently to a sinqle term

-1 A-



-1 0

(3.8) A(il,..ir) = .
r •

r Xr

whe re r rh (i.+1) + I i.
(3.9) C (-1 )i =  1 j=1 x

where D is a minor of D and therefore D > 0 by 10.

40. From (3.8) and (3.9) we find that

(3.10) A(i) ( 1 )r(-1) • D = > 0

Now (3.3), (3.6) and (3.10) show that (3.5) is established.

Remark. Elimination of the unknowns a2 ,... ,an between (3.1) and the

system (3.2) allows us to write Pn (x) explicitly in terms of a quotient of

two determinants, e.q.

2 3 4 5x x x x 1 1 1 1

1 1 1 1 2-1 3 4 5

P (x) = x +
1 3-1 6 10 1 3-1 6 10

0 1 4-1 10 0 1 4-1 10

which is easily seen to aqree with its expression as qiven in (1.29). The

above expression of P 5 (x) is readily continued for n > 5 by simply adding

obvious last rows and columns to both determinants; the only trouble is that

we obtain Pn (x) = x + a ratio of two determinants of order n - 1.
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4. A proof of the second part (1.40) of Theorem 3. we know that the

coefficients a2 , . . . ,a n of the polynomial (3.1) are the solutions of the

system of equations (3.2). Let us use this fact to show first that1i
(4.1) a2 =- Pn(0) > 0

2 

By Cramer's rule

(4.2) 2

where A is qiven by (3.4), and A is obtained from A by omittinq itsn n n

first column and second row. We know by (3.5) that A > 1. Let us show thatn

also

(4.3) > 1

This is done by applyinq to the determinant A precisely the procedure
n

previously applied to A to prove (3.5). Here we need the followingn

stronger form of the total positivity of the matrix of the determinant Dn of

(3.3):

(4.4) A minor of Dn which doe not vanish formally, i.e.

because it has too many zero elements, is positive.

Denote by D the minor of Dn  obtained by omittinq its first columnnn

and second row. This minor havinq an inteqer value, the property (4.4)

implies that

(4.5) D > 1
n =

From this point on the proof of (3.5) as given in 43 applied without any

essential chanqe to estahliRh (4.3). Now (3.5) and (4.2) imply (4.1).

To establish (1.40) we aqain apply the Rudan-Fourier theorem, this time

to P'(x). Let Z' denote the number of zeros of P'(x) in 0 < x < 1.
n n

Writing V'(x) - v(P '(x )P P"(x),. P (x)) we obtain by that theorem that
n n n

(4.6) Z' < V'() - V'(O)

while the equations (1.43) show that

-20-



VI(O) = V(1' a 21.. a n2', a n 1, an

VIM) = v(a #1a 3 .,,a ,P (-)(1), a
2 ' n-i' n n

Since a 2 > 0 by (4.1), it follows as in our proof of (1.39), that the right

Ride of (4.6) vanishes, hence Z = 0. Since P'(0) =1, we have estahlished
n

(1.40).
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A

5. On the nature of ourConjectjre 1 of (1.38). The coefficients Ck

of the expansion

(5.1) (x) =k (c - )
k=1

are given in [1, paqe 2561 to 15 decimal places, as oriqinally computed by

H. T. Davis in 1933, with corrections due to H. E. Salzer. If we substitute

the expansion (5.1) of f(x) = 1/r(x) into the functional equation f(x) =

xf(x+l) we find that the ck satisfy an infinite system of linear equations

obtained from our system (3.2) by substituting ck for ak and then letting

n + -

(n)
The problem is to show that the solutions ak (k = 2,...,n) of the

partial system (3.2) converqe element-wise to the solutions ck of the

infinite system. More specifically we wish to show that

n (n)k
P (x)= I k a k c kx

k=1 k=1

uniformly in every circle of C.

In 1913 P. Riesz devoted a hook [6) to such problems which he calls

"Probl~mes des reduites". His general theory does not apply to our specific

problem. However, further work in Functional Analysis might solve it. This

shows that Fulerian mathematics still presents to contemporary analysts

challenqinq problems.

University of Dundee

Dundee, Scotland

University of Wisconsin - Madison

University of Alberta

Pdmonton, Alberta
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